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Abstract

We present results of calculations of n−6He elastic scattering phase shifts and

resonances in 7He. The calculations utilize the SS-HORSE method combined

with ab initio no-core shell model calculations of the 7He and 6He nuclei with

Daejeon16 and the JISP16 NN interactions.
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1 Introduction

A modern trend of nuclear theory is a development of methods for describing nuclear
states in the continuum, resonances in particular, as well as the boundaries of nuclear
stability and nuclei beyond the drip lines. Obviously, ab initio (“first-principles”)
approaches in this field are of primary importance. The only input for ab initio
theoretical studies is the nucleon-nucleon (NN) and, if needed, three-nucleon (3N)
interactions.

Currently there are a number of reliable methods for ab initio description of nu-
clear bound states (see, e. g., the review [1]). Prominent methods include the Green
function’s Monte Carlo [2], the no-core shell model (NCSM) [3], the coupled cluster
method [4], etc. The NCSM calculations are utilized in this paper. The NCSM is
a modern version of the nuclear shell model which does not introduce an inert core
and includes the degrees of freedom of all nucleons of a given nucleus. The multi-
particle wave function is expanded in a series of basis many-body oscillator functions
(Slater determinants) which include all many-body oscillator states with total excita-
tion quanta less or equal to some given value defined in terms of Nmax. This makes it
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possible to separate completely the center-of-mass motion. The number of basis states
increases very rapidly with number of nucleons A and with Nmax. The achievement of
a reasonable accuracy of the NCSM calculations is primarily limited by the memory
of available modern leadership-class supercomputers. Currently, NCSM applications
are obtained for nuclei with the number of nucleons of about 20. As A increases,
due to computational limits restricting basis space sizes, there is a greater need for
extrapolations to estimate converged results.

However, the NCSM cannot be directly applied to the description of resonant
states. Energies of resonant states are positive with respect to some threshold so
that one needs to consider decay modes. Special methods taking into account the
continuum are therefore needed for the description of resonances.

There are well-developed methods for ab initio description of continuum spectrum
states based on Faddeev and Faddeev–Yakubovsky equations that are successfully
applied in nuclear physics for systems with A ≤ 5 nucleons (see, e. g., the review [1]
and Ref. [5]). A very important breakthrough in developing ab initio theory of nuclear
reactions in systems with total number of nucleons A > 4 was achieved by combin-
ing the NCSM and the resonating group method to built the so-called NCSM with
continuum (NCSMC) approach [6] which has been applied to description of several
nuclear systems with up to 11 [7] and very recently up to 12 nucleons [8]. Nuclear
resonances can be considered also in the no-core Gamow shell model (GSM) [9]. How-
ever, these methods bring forth additional challenges for a numerical realization and
the respective calculations become very demanding.

Recently we proposed the SS-HORSE method [10–14], which generalizes the NCSM
to the continuum spectrum states. The SS-HORSE allows one to calculate the single-
channel S-matrix and resonances by a simple analysis of NCSM eigenenergy behavior
as a function of parameters of the many-body oscillator basis. The SS-HORSE exten-
sion of the NCSM was successfully applied to the calculation of the neutron–α and
proton–α scattering and resonant states in the 5He and 5Li nuclei in Refs. [10, 14];
a generalization of this approach to the case of the democratic decay provided a
description of a resonance in the system of four neutrons (tetraneutron) [15].

A brief review of the SS-HORSE method is presented in Section 2. Results for
a single-channel neutron scattering by the 6He nucleus and resonances in the 7He
nucleus are presented in Section 3.

2 SS-HORSE method

Consider a channel of neutron scattering by a nucleus with A nucleons. The phase shift
calculations within the SS-HORSE approach start from the calculation of the set of the
NCSM eigenenergies EA+1

i with some set of the NCSM basis parameters N i
max and ~Ωi

for the whole (A + 1)-particle system, as well as of the ground state energies EA
i of

the target nucleus with the same ~Ωi and the excitation quanta N i
max or N i

max − 1
depending of the parity of the states of interest of the (A + 1)-particle system. The
respective relative motion energy is the difference

Ei = EA+1
i − EA

i . (1)

The phase shifts δℓ(Ei) at the eigenenergies Ei in the partial wave with the orbital
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momentum ℓ in the case of neutral particle scattering are calculated as [10–12]

tan δℓ(Ei) = −
SNi+2,ℓ(Ei)

CNi+2,ℓ(Ei)
. (2)

Here Sn,ℓ(E) and Cn,ℓ(E) are the regular and irregular oscillator solutions for the
free motion, their analytical expressions can be found in Refs. [16–18]; the oscillator
quanta of the relative motion

N
i = N i

max + NA+1
min −NA

min, (3)

where N i
max is the excitation quanta in the (A + 1)-particle system in the current

calculation, NA+1
min and NA

min are the minimal total oscillator quanta consistent with
the Pauli principle in the (A+1)- and A-particle systems, respectively. The energies Ei

depend, of course, on the NCSM basis parameters, N i
max and ~Ωi. Therefore by

varying these parameters (note, ~Ω appears in the definition of the functions Sn,ℓ

and Cn,ℓ) we can calculate the phase shifts in some energy interval. Next we perform
the phase shift parameterization which makes it possible to calculate the S-matrix
and its poles including those associated with the resonant states in the (A + 1)-body
system.

The phase shifts can be parameterized using the effective range function,

K(E) =
(

√

2µE/~
)2ℓ+1

cot δℓ(E), (4)

where µ is the reduced mass of scattered particles. The function (4) has good an-
alytical properties and may be expanded in Taylor series of energy E (the so-called
effective range expansion),

K(E) = −
1

aℓ
+

µrℓ
~2

E + cE2 + ... , (5)

where aℓ is the scattering length and rℓ is the effective range. The expansion (5) works
well at low energies, however in a larger energy interval, in particular, in the region
of a resonance, it may be inadequate since the phase shift may may take the values of
0, ±π, ±2π, ..., when the effective range function K(E), according to Eq. (4), tends
to infinity. Therefore we express the effective range function as a Padé approximant,

K(E) =
−1 + w

(n)
1 E + w

(n)
2 E2 + ...

aℓ + w
(d)
1 E + w

(d)
2 E2 + ...

. (6)

Clearly, at low energies the Padé approximant (6) unambiguously transforms into the
effective range expansion (5).

With any set of parameters w
(n)
1 , w

(n)
2 , ... , aℓ, w

(d)
1 , w

(d)
2 , ... parametrizing the

effective range function K(E) we can easily calculate the phase shifts δℓ(E) in the
energy interval of interest and calculate the energies Eth

i using Eq. (2) for any com-
bination of the NCSM parameters N i

max and ~Ωi. These energies Eth
i are compared

with the set of energies Ei obtained in the NCSM calculations; the optimal values of

w
(n)
1 , w

(n)
2 , ... , aℓ, w

(d)
1 , w

(d)
2 , ..., parametrizing the effective range function, are found
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by minimizing the sum of squares of deviation of the sets of Eth
i and Ei with weights

enhancing the contribution of energies obtained with larger Nmax values,

Ξw =

√

√

√

√

1

p

p
∑

i=1

(

(

Eth
i − Ei

)2
(

N i
max

NM

)2
)

. (7)

Here p is the number of energy values and NM is the largest value of N i
max used in

the fit. With the optimal set of the fit parameters w
(n)
1 , w

(n)
2 , ... , aℓ, w

(d)
1 , w

(d)
2 , ...

we can use Eq. (4) and (2) to obtain a parametrization of the ~Ω dependencies of the
eigenenergies Ei in any basis space N

i.

The S-matrix and the effective range function K(E) are related by a simple an-
alytic formula. Therefore, after obtaining an accurate parametrization of K(E), one
can search numerically for the S-matrix poles in the complex energy plain. Some
tricks useful to design a stable and fast numerical algorithm for the pole searches
at complex energies, are described in Ref. [14]. By locating the S-matrix poles, we
obtain energies Er and widths Γ of resonances in the many-body nuclear system.

3 n−
6He scattering

We start from the NCSM calculations of the 6He ground state energies E6
i with the

Daejeon16 [19] and JISP16 [20] NN interactions with Nmax up to 16 and ~Ω ranging
from 8 to 50 MeV. Next we calculate the lowest eigenenergies E7

i of the 3/2−, 1/2−,
5/2− and 1/2+ states in the 7He nucleus with Nmax up to 17 with the same interactions
and the same ~Ω values.

We first consider calculations performed with the Daejeon16 NN interaction. The
set of the relative motion energies Ei is calculated using Eq. (1). As an example, we
present in the left panel of Fig. 1 the set of relative motion energies Ei in the 3/2−
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Figure 1: Left panel: Symbols are the energies of the relative motion Ei in the
3/2− scattering state obtained in the NCSM with the Daejeon16 NN interaction; the
energies used for the SS-HORSE parametrization are taken from the shaded area and
the results of the SS-HORSE parametrization of energies for each Nmax are shown
by solid curves of respective colors. Right panel: The phase shifts calculated using
Eq. (2) at the energies from the left panel.
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and 1/2+ scattering states ob-
tained with the Daejeon16 NN
interaction. Symbols are the
selected phase shifts δℓ(Ei);
the SS-HORSE fit of the phase
shifts is presented by black
curves.

state. The right panel of the same figure presents the set of the phase shifts δℓ(Ei) at
these energies calculated using Eq. (2).

As stated in Refs. [10–15], we cannot use all energies Ei obtained by the NCSM for
the further SS-HORSE analysis. The set of acceptable energies Ei should be selected
for the SS-HORSE. In particular, the SS-HORSE equations are consistent only with
those energies obtained at any given Nmax which increase with ~Ω, i. e., for any
given Nmax we should have dE

d~Ω > 0. In other words, from the set of energies ENmax

i

obtained by NCSM with any Nmax we should select only those which are obtained
with ~Ω > ~ΩNmax

min , where ~ΩNmax

min corresponds to the minimum of the ~Ω dependence

of the relative motion energies ENmax

i .

Next, for the effective range function parametrization, we should select only the
results obtained with large enough Nmax and in the ranges of ~Ω values for each Nmax

where the phase shifts converge, at least, approximately. The phase shift convergence
means that the phase shifts δℓ(Ei) obtained with different Nmax and ~Ω values form
a single smooth curve as a function of energy. In the right panel of Fig. 1, we see that
the phase shifts δℓ(Ei) tend to form a smooth curve as Nmax increases in a range of
moderate energies which correspond to moderate ~Ω values. The phase shifts δℓ(Ei)
obtained with small enough Nmax deviate significantly from this single curve in large
energy intervals. Correspondingly, the phase shifts obtained even with large Nmax

at small energies corresponding to small ~Ω values before the minima of the ~Ω
dependences of ENmax

i also deviate from the phase shift curve formed by the NCSM
results from other Nmax values.

The energies selected for the SS-HORSE fit are shown by the shaded area in the
left panel of Fig. 1. The solid curves in this panel show the parametrization of the
NCSM energies through the function (6) with a set of fitted parameters. The selected
energies produce a set of the phase shifts δ1(Ei) forming a smooth single curve, as
is seen in Fig. 2, where we also present the SS-HORSE 3/2− phase shifts accurately
describing the set of the selected phase shifts δ1(Ei).

We note that we perform a few alternative selections of energies Ei, e. g., we
exclude from the selection some large energies Ei which lie far from the resonance.
These alternative energy selections are used for estimating uncertainties of our predic-
tions for the parameters of the resonance and low-energy scattering. The resonance
energies Er (relative to the n + 6He threshold) and widths Γ of resonances in the
7He nucleus obtained by a numerical location of the S-matrix poles are presented in
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Table 1: Energies Er (relative to the n + 6He threshold) and widths of negative par-
ity resonant states in 7He nucleus and parameters of low-energy scattering n−6He
in positive and negative parity states, scattering lengths aℓ and effective ranges rℓ,
obtained with Daejeon16 and JISP16 NN interactions. Our estimate of the uncer-
tainties of the quoted results are in presented parentheses. The available results of
the GSM calculations [21] and of the NCSMC calculations [22,23] with SRG-evolved
N3LO chiral NN force together with experimental data are presented for comparison.

Daejeon16 JISP16 GSM NCSMC Experiment
3/2− [24]

Er, MeV 0.27(1) 0.70(2) 0.39 0.71 0.430(3)
Γ, MeV 0.12(1) 0.60(2) 0.178 0.30 0.182(5)
a1, fm3 −170(10) −66(2)
r1, fm−1 −1.10(3) −0.88(1)

1/2− [25] [26] [27]
Er, MeV 2.7(1) 2.8(1) 2.39 3.03(10) 3.53 1.0(1)
Γ, MeV 4.2(1) 5.02(2) 2.89 2 10 0.75(8)
a1, fm3 −4.0(1) −4.5(2)
r1, fm−1 −4.4(2) −3.1(1)

5/2− [28]
Er, MeV 3.65(2) 4.37(4) 3.47(2) 3.13 3.35(10)
Γ, MeV 1.37(1) 1.55(2) 2.25(28) 1.07 1.99(17)
a3, fm7 −274(4) −119(4)
r3, fm−5 −0.0122(4) −0.040(1)

1/2+

a0, fm 2.1(2) 3.2(5)
r0, fm 2.1(2) 1.1(6)

Table 1 as well as the low-energy scattering parameters, the scattering length aℓ and
the effective range rℓ, together with their estimated uncertainties. For comparison,
we present in Table 1 also the resonance parameters from the GSM studies of Ref. [21]
and the NCSMC studies of Refs. [22, 23] with SRG-evolved N3LO chiral NN forces
together with available experimental data. Our results for the 3/2− resonance are
seen to be consistent with the GSM results and experiment.

The same approach is used to examine the 1/2− and 5/2− resonances in the 7He
nucleus. The results for the phase shifts together with selected phase shifts δ1(Ei)
are also shown in Fig. 2 while the resonance and low-energy scattering parameters
are presented in Table 1.

We note that the convergence of the 1/2− phase shits, where we obtain a wide
resonance, is slower than in the case of the 3/2− state. As a result, our predictions
for the 1/2− resonance energy and width tend to have larger uncertainties. The
predictions for the low-energy scattering parameters for the 1/2− case appear to have
uncertainties comparable to the resonance parameter uncertainties.

The experimental situation for the 1/2− resonance is not clear. While the resonant
energies of Refs. [25, 26] are comparable, the widths are very different. Our results
are in fair agreement with the NCSMC results and the neutron pickup and proton-
removal reaction experiments [25] and definitely do not support the interpretation
of experimental data on one-neutron knockout from 8He of Ref. [27] advocating a
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Figure 3: The phase shifts
in the 3/2−, 1/2−, 5/2−

and 1/2+ scattering states ob-
tained with the JISP16 NN in-
teraction in comparison with
those obtained with the Dae-
jeon16 (red dashed curves).
See Fig. 2 for other details.

low-lying (Er ∼ 1 MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance in 7He.

In the case of the 5/2− scattering, the phase shifts convergence is similar to that
of the 3/2− state. The resonance energy and width presented in Table 1 are seen to
be reasonably close to the experimental data, GSM and NCSMC results.

We analyze also the scattering in the 1/2+ state in our NCSM-SS-HORSE ap-
proach. The 1/2+ scattering phase shifts shown in Fig. 2 monotonically decrease
without any signal of a resonant state. This result is in an agreement with the exper-
imental data and the GSM predictions of Ref. [21] and NCSMC predictions [22, 23].

The phase shifts obtained with the JISP16 NN interaction are compared with
those from Daejeon16 in Fig. 3. The only difference in getting these JISP16 results is
that we avoided the expensive Nmax = 17 calculations for the positive-parity states
since there is no experimental evidence for the positive-parity resonances in 7He and
we do not see any indication of such resonances in our phase shift calculations. The
JISP16 and Daejeon16 1/2+ scattering phase shifts are seen to be very close as are the
respective low-energy scattering parameters listed in Table 1. The 3/2− and 5/2−
7He resonances are generated by the JISP16 at slightly higher energies; the 1/2−

resonance appears approximately at the same energy, however its width is somewhat
larger in the JISP16 results compared with the Daejeon16 results.

4 Summary and conclusions

We performed a study of the n + 6He continuum states within the single-channel
SS-HORSE extension of the ab initio NCSM with JISP16 and Daejeon16 NN inter-
actions. No resonance was found in the 1/2+ state consistent with the GSM [21],
NCSMC [22,23] studies and experimental situation. The 1/2− resonance is predicted
by both interactions to be wide enough and at the energy in a reasonable agreement
with the NCSMC [22,23] calculations and results of experiments of Refs. [25,26] and
clearly contradicts with the hypothesis of a low-lying narrow resonant state suggested
in Ref. [27]. We note however that this as well as other 7He resonances are known
from the experiment with weak spin-parity assignment arguments. Our results for the
narrow 3/2− and wide 5/2− resonances are in a reasonable agreement with experi-
ment and with results quoted in the GSM [21] and NCSMC [22,23] studies. However,
JISP16 overestimates the width of the 3/2− and the energy of the 5/2− resonances.
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